Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Commun Biol ; 7(1): 565, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745044

RESUMEN

Circular RNAs (circRNAs) have recently been suggested as potential functional modulators of cellular physiology processes in gastric cancer (GC). In this study, we demonstrated that circFOXP1 was more highly expressed in GC tissues. High circFOXP1 expression was positively associated with tumor size, lymph node metastasis, TNM stage, and poor prognosis in patients with GC. Cox multivariate analysis revealed that higher circFOXP1 expression was an independent risk factor for disease-free survival (DFS) and overall survival (OS) in GC patients. Functional studies showed that increased circFOXP1 expression promoted cell proliferation, cell invasion, and cell cycle progression in GC in vitro. In vivo, the knockdown of circFOXP1 inhibited tumor growth. Mechanistically, we observed ALKBH5-mediated m6A modification of circFOXP1 and circFOXP1 promoted GC progression by regulating SOX4 expression and sponging miR-338-3p in GC cells. Thus, our findings highlight that circFOXP1 could serve as a novel diagnostic and prognostic biomarker and potential therapeutic target for GC.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Progresión de la Enfermedad , Factores de Transcripción Forkhead , Regulación Neoplásica de la Expresión Génica , MicroARNs , ARN Circular , Factores de Transcripción SOXC , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidad , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Masculino , ARN Circular/genética , ARN Circular/metabolismo , Femenino , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Persona de Mediana Edad , Línea Celular Tumoral , Animales , Ratones , Proliferación Celular/genética , Ratones Desnudos , Pronóstico , Ratones Endogámicos BALB C
2.
Cell Rep ; 43(4): 114032, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38568805

RESUMEN

N(6)-methyladenosine (m6A) critically regulates RNA dynamics in various biological processes. The m6A demethylase ALKBH5 promotes tumorigenesis of glioblastoma, while the intricate web that orchestrates its regulation remains enigmatic. Here, we discover that cell density affects ALKBH5 subcellular localization and m6A dynamics. Mechanistically, ALKBH5 is phosphorylated by the large tumor suppressor kinase 2 (LATS2), preventing its nuclear export and enhancing protein stability. Furthermore, phosphorylated ALKBH5 reciprocally erases m6A from LATS2 mRNA, thereby stabilizing this transcript. Unexpectedly, LATS2 depletion suppresses glioblastoma stem cell self-renewal independent of yes-associated protein activation. Additionally, deficiency in either LATS2 or ALKBH5 phosphorylation impedes tumor progression in mouse xenograft models. Moreover, high levels of LATS2 expression and ALKBH5 phosphorylation are associated with tumor malignancy in patients with gliomas. Collectively, our study unveils an oncogenic positive feedback loop between LATS2 and ALKBH5, revealing a non-canonical branch of the Hippo pathway for RNA processing and suggesting potential anti-cancer interventions.


Asunto(s)
Adenosina/análogos & derivados , Desmetilasa de ARN, Homólogo 5 de AlkB , Proteínas Serina-Treonina Quinasas , Proteínas Supresoras de Tumor , Humanos , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Fosforilación , Ratones , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/genética , Adenosina/metabolismo , Retroalimentación Fisiológica , Carcinogénesis/metabolismo , Carcinogénesis/patología , Carcinogénesis/genética , Línea Celular Tumoral , Ratones Desnudos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células HEK293 , ARN Mensajero/metabolismo , ARN Mensajero/genética , Autorrenovación de las Células
3.
J Exp Clin Cancer Res ; 43(1): 106, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589927

RESUMEN

INTRODUCTION: Gastric cancer (GC) is one of the leading causes of cancer-related death worldwide. Recently, targeted therapies including PD1 (programmed cell death 1) antibodies have been used in advanced GC patients. However, identifying new biomarker for immunotherapy is still urgently needed. The objective of this study is to unveil the immune evasion mechanism of GC cells and identify new biomarkers for immune checkpoint blockade therapy in patients with GC. METHODS: Coimmunoprecipitation and meRIP were performed to investigate the mechanism of immune evasion of GC cells. Cocuture system was established to evaluate the cytotoxicity of cocultured CD8+ T cells. The clinical significance of HSPA4 upregulation was analyzed by multiplex fluorescent immunohistochemistry staining in GC tumor tissues. RESULTS: Histone acetylation causes HSPA4 upregulation in GC tumor tissues. HSPA4 upregulation increases the protein stability of m6A demethylase ALKBH5. ALKBH5 decreases CD58 in GC cells through m6A methylation regulation. The cytotoxicity of CD8+ T cells are impaired and PD1/PDL1 axis is activated when CD8+ T cells are cocultured with HSPA4 overexpressed GC cells. HSPA4 upregulation is associated with worse 5-year overall survival of GC patients receiving only surgery. It is an independent prognosis factor for worse survival of GC patients. In GC patients receiving the combined chemotherapy with anti-PD1 immunotherapy, HSPA4 upregulation is observed in responders compared with non-responders. CONCLUSION: HSPA4 upregulation causes the decrease of CD58 in GC cells via HSPA4/ALKBH5/CD58 axis, followed by PD1/PDL1 activation and impairment of CD8+ T cell's cytotoxicity, finally induces immune evasion of GC cells. HSPA4 upregulation is associated with worse overall survival of GC patients with only surgery. Meanwhile, HSPA4 upregulation predicts for better response in GC patients receiving the combined immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Gástricas , Humanos , Linfocitos T CD8-positivos/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Regulación hacia Arriba , Evasión Inmune , Quimioterapia Combinada , Proteínas del Choque Térmico HSP110/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo
4.
Biochem Soc Trans ; 52(2): 707-717, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38629637

RESUMEN

The RNA modification N6-methyladenosine (m6A) is conserved across eukaryotes, and profoundly influences RNA metabolism, including regulating RNA stability. METTL3 and METTL14, together with several accessory components, form a 'writer' complex catalysing m6A modification. Conversely, FTO and ALKBH5 function as demethylases, rendering m6A dynamic. Key to understanding the functional significance of m6A is its 'reader' proteins, exemplified by YTH-domain-containing proteins (YTHDFs) canonical reader and insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) non-canonical reader. These proteins play a crucial role in determining RNA stability: YTHDFs mainly promote mRNA degradation through different cytoplasmic pathways, whereas IGF2BPs function to maintain mRNA stability. Additionally, YTHDC1 functions within the nucleus to degrade or protect certain m6A-containing RNAs, and other non-canonical readers also contribute to RNA stability regulation. Notably, m6A regulates retrotransposon LINE1 RNA stability and/or transcription via multiple mechanisms. However, conflicting observations underscore the complexities underlying m6A's regulation of RNA stability depending upon the RNA sequence/structure context, developmental stage, and/or cellular environment. Understanding the interplay between m6A and other RNA regulatory elements is pivotal in deciphering the multifaceted roles m6A plays in RNA stability regulation and broader cellular biology.


Asunto(s)
Adenosina , Adenosina/análogos & derivados , Estabilidad del ARN , Proteínas de Unión al ARN , Adenosina/metabolismo , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Metiltransferasas/metabolismo , ARN/metabolismo , ARN/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Animales , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Procesamiento Postranscripcional del ARN , Metilación de ARN
5.
Theranostics ; 14(5): 2151-2166, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505602

RESUMEN

Background: The therapeutic benefits of targeting follicle-stimulating hormone (FSH) receptor in treatment of ovarian cancer are significant, whereas the role of FSH in ovarian cancer progresses and the underlying mechanism remains to be developed. Methods: Tissue microarray of human ovarian cancer, tumor xenograft mouse model, and in vitro cell culture were used to investigate the role of FSH in ovarian carcinogenesis. siRNA, lentivirus and inhibitors were used to trigger the inactivation of genes, and plasmids were used to increase transcription of genes. Specifically, pathological characteristic was assessed by histology and immunohistochemistry (IHC), while signaling pathway was studied using western blot, quantitative RT-PCR, and immunofluorescence. Results: Histology and IHC of human normal ovarian and tumor tissue confirmed the association between FSH and Snail in ovarian cancer metastasis. Moreover, in epithelial ovarian cancer cells and xenograft mice, FSH was showed to promote epithelial mesenchymal transition (EMT) progress and metastasis of ovarian cancer via prolonging the half-life of Snail mRNA in a N6-methyladenine methylation (m6A) dependent manner, which was mechanistically through the CREB/ALKBH5 signaling pathway. Conclusions: These findings indicated that FSH induces EMT progression and ovarian cancer metastasis via CREB/ALKBH5/Snail pathway. Thus, this study provided new insight into the therapeutic strategy of ovarian cancer patients with high level of FSH.


Asunto(s)
Adenina/análogos & derivados , Neoplasias Ováricas , Humanos , Animales , Femenino , Ratones , Línea Celular Tumoral , Neoplasias Ováricas/tratamiento farmacológico , Hormona Folículo Estimulante/metabolismo , Transición Epitelial-Mesenquimal/genética , Desmetilación , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo
6.
Exp Cell Res ; 437(1): 113994, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38479704

RESUMEN

m6A modification has been studied in tumors, but its role in host anti-tumor immune response and TAMs polarization remains unclear. The fatty acid oxidation (FAO) process of TAMs is also attracting attention. A co-culture model of colorectal cancer (CRC) cells and macrophages was used to simulate the tumor microenvironment. Expression changes of m6A demethylase genes FTO and ALKBH5 were screened. ALKBH5 was further investigated. Gain-of-function experiments were conducted to study ALKBH5's effects on macrophage M2 polarization, CRC cell viability, proliferation, migration, and more. Me-RIP and Actinomycin D assays were performed to study ALKBH5's influence on CPT1A, the FAO rate-limiting enzyme. AMP, ADP, and ATP content detection, OCR measurement, and ECAR measurement were used to explore ALKBH5's impact on macrophage FAO level. Rescue experiments validated ALKBH5's mechanistic role in macrophage M2 polarization and CRC malignant development. In co-culture, CRC cells enhance macrophage FAO and suppress m6A modification in M2 macrophages. ALKBH5 was selected as the gene for further investigation. ALKBH5 mediates CPT1A upregulation by removing m6A modification, promoting M2 macrophage polarization and facilitating CRC development. These findings indicate that ALKBH5 enhances fatty acid metabolism and M2 polarization of macrophages by upregulating CPT1A, thereby promoting CRC development.


Asunto(s)
Neoplasias Colorrectales , Macrófagos , Humanos , Regulación hacia Arriba/genética , Macrófagos/metabolismo , Neoplasias Colorrectales/patología , Ácidos Grasos/metabolismo , Microambiente Tumoral , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo
7.
Biomed Pharmacother ; 174: 116479, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537580

RESUMEN

RNA methylation modifications are widespread in eukaryotes and prokaryotes, with N6-methyladenosine (m6A) the most common among them. Demethylases, including Fat mass and obesity associated gene (FTO) and AlkB homolog 5 (ALKBH5), are important in maintaining the balance between RNA methylation and demethylation. Recent studies have clearly shown that demethylases affect the biological functions of tumors by regulating their m6A levels. However, their effects are complicated, and even opposite results have appeared in different articles. Here, we summarize the complex regulatory networks of demethylases, including the most important and common pathways, to clarify the role of demethylases in tumors. In addition, we describe the relationships between demethylases and the tumor microenvironment, and introduce their regulatory mechanisms. Finally, we discuss evaluation of demethylases for tumor diagnosis and prognosis, as well as the clinical application of demethylase inhibitors, providing a strong basis for their large-scale clinical application in the future.


Asunto(s)
Adenosina , Adenosina/análogos & derivados , Neoplasias , Microambiente Tumoral , Humanos , Adenosina/metabolismo , Neoplasias/genética , Neoplasias/patología , Neoplasias/enzimología , Metilación , Animales , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Regulación Neoplásica de la Expresión Génica
8.
Phytomedicine ; 125: 155359, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301300

RESUMEN

BACKGROUND: Myocardial ischemia/reperfusion injury (MIRI) poses a formidable challenge to cardiac reperfusion therapy due to the absence of effective clinical interventions. Methylation of N6-methyladenosine (m6A), which is the most common post-transcriptional modifications occurring within mammalian mRNA, is believed to be involved in MIRI by modulating autophagy. MicroRNAs (miRNAs) play a crucial role in regulating gene expression at the post-transcriptional level and have been implicated in the regulation of m6A methylation. Suxiao Jiuxin Pill (SJP) is extensively used in China for the clinical treatment of angina pectoris and confers benefits to patients with acute coronary syndrome who have received percutaneous coronary intervention. However, the precise mechanisms underlying SJP intervention in MIRI remain unclear. PURPOSE: This study aimed to demonstrate, both in vivo and in vitro, that SJP could alleviate autophagy in MIRI by regulating miR-193a-3p to target and upregulate the demethylase ALKBH5. METHODS: An in vitro hypoxia/reoxygenation model was established using H9c2 cells, while an in vivo MIRI model was established using Wistar rats. A lentivirus harboring the precursor sequence of miR-193a-3p was employed for its overexpression. Adeno-associated viruses were used to silence both miR-193a-3p and ALKBH5 expressions. Cardiac function, infarct size, and tissue structure in rats were assessed using echocardiography, triphenyl tetrazolium chloride (TTC) staining, and HE staining, respectively. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) was employed to detect the levels of apoptosis in rat cardiac tissue. m6A methylation levels were assessed using colorimetry. GFP-RFP-LC3B was used to monitor autophagic flux and transmission electron microscopy was used to evaluate the development of autophagosomes. Western Blot and qRT-PCR were respectively employed to assess the levels of autophagy-related proteins and miR-193a-3p. RESULTS: SJP alleviated autophagy, preserved cardiac function, and minimized myocardial damage in the hearts of MIRI rats. SJP attenuated autophagy in H/R H9C2 cells. Elevated levels of miR-193a-3p were observed in the cardiac tissues of MIRI rats and H/R H9C2 cells, whereas SJP downregulated miR-193a-3p levels in these models. ALKBH5, a target gene of miR-193, is negatively regulated by miR-193a-3p. Upon overexpression of miR-193a-3p or silencing of ALKBH5, m6A methylation decreased, and the autophagy-attenuating effects of SJP and its components, senkyunolide A and l-borneol, were lost in H/R H9C2 cells, whereas in MIRI rats, these effects were not abolished but merely weakened. Further investigation indicated that the METTL3 inhibitor STM2475, combined with the silencing of miR-193a-3p, similarly attenuated autophagy in the hearts of MIRI rats. This suggests that a reduction in m6A methylation is involved in autophagy alleviation. CONCLUSION: We demonstrated that SJP mitigates autophagy in MIRI by downregulating miR-193a-3p, enhancing ALKBH5 expression, and reducing m6A methylation, a mechanism potentially attributed to its constituents, senkyunolide A and l-borneol.


Asunto(s)
Canfanos , MicroARNs , Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Humanos , Ratas , Animales , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Ratas Wistar , Isquemia Miocárdica/tratamiento farmacológico , Isquemia Miocárdica/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Autofagia , Reperfusión , Apoptosis , Miocitos Cardíacos/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Metiltransferasas/metabolismo , Metiltransferasas/farmacología , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo
9.
PLoS One ; 19(1): e0290986, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38252669

RESUMEN

Melanoma is a highly malignant skin cancer. This study aimed to investigate the role of long non-coding RNA MIR205 host gene (lncRNA MIR205HG) in proliferation, invasion, and migration of melanoma cells via jumonji domain containing 2C (JMJD2C) and ALKB homolog 5 (ALKBH5). Real-time quantitative polymerase chain reaction or Western blot assay showed that MIR205HG, JMJD2C, and ALKBH5 were increased in melanoma cell lines. Cell counting kit-8, colony formation, and Transwell assays showed that silencing MIR205HG inhibited proliferation, invasion, and migration of melanoma cells. RNA immunoprecipitation, actinomycin D treatment, and chromatin immunoprecipitation showed that MIR205HG may bind to human antigen R (HuR, ELAVL1) and stabilized JMJD2C expression, and JMJD2C may increase the enrichment of H3K9me3 in the ALKBH5 promotor region to promote ALKBH5 transcription. The tumor xenograft assay based on subcutaneous injection of sh-MIR205HG-treated melanoma cells showed that silencing MIR205HG suppressed tumor growth and reduced Ki67 positive rate by inactivating the JMJD2C/ALKBH5 axis. Generally, MIR205HG facilitated proliferation, invasion, and migration of melanoma cells through HuR-mediated stabilization of JMJD2C and increasing ALKBH5 transcription by erasing H3K9me3.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Histona Demetilasas con Dominio de Jumonji , Melanoma , ARN Largo no Codificante , Humanos , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Proliferación Celular , Inmunoprecipitación de Cromatina , Melanoma/metabolismo , Melanoma/patología , Procesos Neoplásicos , ARN Largo no Codificante/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo
10.
Toxicol Appl Pharmacol ; 483: 116807, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38199493

RESUMEN

N6-methyladenosine (m6A) is the most prevalent mRNA modification, and it is verified to be closely correlated with cancer occurrence and progression. The m6A demethylase ALKBH5 (alkB homolog 5) is dysregulated in various cancers. However, the role and underlying mechanism of ALKBH5 in the pathogenesis and especially the chemo-resistance of non-small cell lung cancer (NSCLC) is poorly elucidated. The current study shows that ALKBH5 expression is reduced in paclitaxel (PTX) resistant NSCLC cells and down-regulation of ALKBH5 usually implies poor prognosis of NSCLC patients. Over-expression of ALKBH5 in PTX-resistant cells can suppress cell proliferation and enhance chemo-sensitivity, while knockdown of ALKBH5 exerts the opposite effect, which further supports the tumor suppressive role of ALKBH5. Over-expression of ALKBH5 can also reverse the epithelial-mesenchymal transition (EMT) process in PTX-resistant cancer cells. Mechanistically, data from RNA-seq, real-time PCR and western blotting indicate that CEMIP (cell migration inducing hyaluronidase 1), also known as KIAA1199, may be the downstream target of ALKBH5. Furthermore, ALKBH5 negatively regulates the CEMIP level by reducing the stability of CEMIP mRNA. Collectively, the current data demonstrate that the ALKBH5/CEMIP axis modulates the EMT process in NSCLC, which in turn regulates the chemo-sensitivity of cancer cells to PTX.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Transición Epitelial-Mesenquimal , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Paclitaxel/farmacología , ARN Mensajero/metabolismo
11.
Sci Rep ; 14(1): 1303, 2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38221546

RESUMEN

Despite numerous reports indicating the significant impact of RNA modification on malignant glioblastoma (GBM) cell behaviors such as proliferation, invasion and therapy efficacy, its specific involvement in glioblastoma (GBM) angiogenesis is remains unclear and is currently under investigation. In this study, we aimed to investigate the relevance between RNA modification regulators and GBM angiogenesis. Our study employed bioinformatic analyses, including Gene Set Enrichment Analysis (GSEA), differential expression analysis, and Kaplan-Meier survival analysis, to identify regulators of angiogenesis-associated RNA modification (RM). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were applied to identify the enrichment of angiogenesis associated signatures in ALKBH5-high expression GBMs. We also utilized Western blot to verify the upregulation of ALKBH5 in clinical GBM samples. By a series of in vitro and in vivo assays, including plasmid transfection, wound healing, transwell invasion test, tube formation, RT-qPCR, ELISA assays and xenograft mice model, we validated the angiogenesis regulation ability of ALKBH5 in GBM. The N6-methyladenosine (m6A) modification "erase" ALKBH5 emerged as a candidate regulator associated with angiogenesis, demonstrating elevated expression and robust prognostic predictive ability in GBM patients. We also revealed enrichment of vasculature development biological process in GBMs with high ALKBH5 expression. Subsequently, we validated the elevated the expression of ALKBH5 in clinical GBM and paired adjacent tissues through western blot. Additionally, we knocked down the expression of ALKBH5 using sh-RNAs in U87 GBM cells to access the angiogenesis induction ability in U87 cells. In vitro experiments, Human Umbilical Vein Endothelial Cells (HUVECs) were used to perform wound healing, transwell migration and tube formation analysis, results indicated that ALKBH5 knock-down of U87 cells could decrease the pro-angiogenesis ability of U87 GBM cells. Further validation of our bioinformatic findings confirmed that ALKBH5 knockdown impaired VEGFA secretion in both in vitro and in vivo settings in U87 cells. These results comprehensively affirm the crucial role of ALKBH5 in regulating GBM-induced angiogenesis, both in vitro and in vivo. ALKBH5 not only emerges as a promising prognostic factor for GBM patients, but also plays a pivotal role in sustaining GBM progression by promoting angiogenesis.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Animales , Ratones , Glioblastoma/patología , Pronóstico , Angiogénesis , Neoplasias Encefálicas/patología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , ARN/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo
12.
J Cardiovasc Pharmacol ; 83(2): 183-192, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37989146

RESUMEN

ABSTRACT: N(6)-methyladenosine (m6A) methylation modification is involved in the progression of myocardial infarction (MI). In this study, we investigated the effects of demethylase alkylation repair homolog 5 (ALKBH5) on cell apoptosis and oxidative stress in MI. The ischemia/reperfusion (I/R) injury mouse model and hypoxia/reoxygenation (H/R) cell model were established. The levels of ALKBH5 and mitsugumin 53 (MG53) were measured by quantitative real-time polymerase chain reaction, immunohistochemical, and immunofluorescence analysis. Apoptosis was evaluated by TUNEL assay, flow cytometry, and western blot. Oxidative stress was assessed by antioxidant index kits. Methylation was analyzed by RNA binding protein immunoprecipitation (RIP), MeRIP, and dual-luciferase reporter assay. We observed that ALKBH5 and MG53 were highly expressed in MI. Overexpression of ALKBH5 inhibited H/R-induced cardiomyocyte apoptosis and oxidative stress in vitro, and it inhibited I/R-induced collagen deposition, cardiac function, and apoptosis in vivo. ALKBH5 could bind to MG53, inhibit m6A methylation of MG53, and increase its mRNA stability. Silencing of MG53 counteracted the inhibition of apoptosis and oxidative stress induced by ALKBH5. In conclusion, ALKBH5 suppressed m6A methylation of MG53 and inhibited MG53 degradation to inhibit apoptosis and oxidative stress of cardiomyocytes, thereby attenuating MI. The results provided a theoretical basis that ALKBH5 is a potential target for MI treatment.


Asunto(s)
Adenosina , Enzimas AlkB , Desmetilasa de ARN, Homólogo 5 de AlkB , Infarto del Miocardio , Estrés Oxidativo , Animales , Ratones , Adenina/análogos & derivados , Adenosina/análogos & derivados , Enzimas AlkB/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Apoptosis , Proteínas de la Membrana , Metilación , Infarto del Miocardio/metabolismo
13.
Redox Biol ; 69: 102993, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38104484

RESUMEN

Resistance to chemotherapy is the main reason for treatment failure and poor prognosis in patients with triple-negative breast cancer (TNBC). Although the association of RNA N6-methyladenosine (m6A) modifications with therapy resistance is noticed, its role in the development of therapeutic resistance in TNBC is not well documented. This study aimed to investigate the potential mechanisms underlying reactive oxygen species (ROS) regulation in doxorubicin (DOX)-resistant TNBC. Here, we found that DOX-resistant TNBC cells displayed low ROS levels because of increased expression of superoxide dismutase (SOD2), thus maintaining cancer stem cells (CSCs) characteristics and DOX resistance. FOXO1 is a master regulator that reduces cellular ROS in DOX-resistant TNBC cells, and knockdown of FOXO1 significantly increased ROS levels by inhibiting SOD2 expression. Moreover, the m6A demethylase ALKBH5 promoted m6A demethylation of FOXO1 mRNA and increased FOXO1 mRNA stability in DOX-resistant TNBC cells. The analysis of clinical samples revealed that the increased expression levels of ALKBH5, FOXO1, and SOD2 were significantly positively correlated with chemoresistance and poor prognosis in patients with TNBC. To our knowledge, this is the first study to highlight that ALKBH5-mediated FOXO1 mRNA demethylation contributes to CSCs characteristics and DOX resistance in TNBC cells. Furthermore, pharmacological targeting of FOXO1 profoundly restored the response of DOX-resistant TNBC cells, both in vitro and in vivo. In conclusion, we demonstrated a critical function of ALKBH5-mediated m6A demethylation of FOXO1 mRNA in restoring redox balance, which in turn promoting CSCs characteristics and DOX resistance in TNBC, and suggested that targeting the ALKBH5/FOXO1 axis has therapeutic potential for patients with TNBC refractory to chemotherapy.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Especies Reactivas de Oxígeno , Doxorrubicina/farmacología , ARN Mensajero/genética , Estabilidad del ARN , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo
14.
J Cell Mol Med ; 28(2): e18066, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38098223

RESUMEN

The long noncoding RNA PVT1 is reported to act as an oncogene in several kinds of cancers, especially ovarian cancer (OV). Abnormal levels of N6 -methyladenosine, a dynamic and reversible modification, are associated with tumorigenesis and malignancies. Our previous study reported that PVT1 plays critical roles in regulating OV. However, it is still largely unknown how m6 A modification affects OV via PVT1. In this study, we aimed to investigate the regulation of ALKBH5 by affecting PVT1 in OV. We first found that the PVT1 RNA level was higher in OV cells than in IOSE80 cells, and conversely, the m6 A modification level of PVT1 was lower in OV cells. By searching the HPA, ALKBH5, which is responsible for PVT1 demethylation, was found to be upregulated in OV tissues versus normal ovarian tissues. ALKBH5 binds to PVT1 RNA, and knockdown of ALKBH5 decreased PVT1 RNA levels. ALKBH5 also increased FOXM1 levels by upregulating PVT1, at least partially. Knockdown of ALKBH5 suppressed OV growth, colony formation, tumour formation and invasion, which were partially reversed by overexpression of PVT1. Moreover, ALKBH5 knockdown decreased FOXM1 levels by regulating PVT1 RNA expression, subsequently increasing the sensitivity to carboplatin, 5-FU and docetaxel chemotherapy. Taken together, these results indicate that ALKBH5 directly regulates the m6 A modification and stability of PVT1. Then, modified PVT1 further regulates FOXM1 and thus affects malignant behaviours and chemosensitivity in OV cells. All these results indicate that ALKBH5 regulates the malignant behaviour of OV by regulating PVT1/FOXM1.


Asunto(s)
Neoplasias Ováricas , ARN Largo no Codificante , Humanos , Femenino , ARN Largo no Codificante/metabolismo , Proliferación Celular/genética , Neoplasias Ováricas/patología , Docetaxel , Carboplatino , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo
15.
J Med Chem ; 66(23): 15944-15959, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37983486

RESUMEN

M6A (N6-methyladenosine) plays a significant role in regulating RNA processing, splicing, nucleation, translation, and stability. AlkB homologue 5 (ALKBH5) is an Fe(II)/2-oxoglutarate (2-OG)-dependent dioxygenase that demethylates mono- or dimethylated adenosines. ALKBH5 can be regarded as an oncogenic factor for various human cancers. However, the discovery of potent and selective ALKBH5 inhibitors remains a challenge. We identified DDO-2728 as a novel and selective inhibitor of ALKBH5 by structure-based virtual screening and optimization. DDO-2728 was not a 2-oxoglutarate analogue and could selectively inhibit the demethylase activity of ALKBH5 over FTO. DDO-2728 increased the abundance of m6A modifications in AML cells, reduced the mRNA stability of TACC3, and inhibited cell cycle progression. Furthermore, DDO-2728 significantly suppressed tumor growth in the MV4-11 xenograft mouse model and showed a favorable safety profile. Collectively, our results highlight the development of a selective probe for ALKBH5 that will pave the way for the further study of ALKBH5 targeting therapies.


Asunto(s)
Dioxigenasas , Leucemia Mieloide Aguda , Humanos , Ratones , Animales , Ácidos Cetoglutáricos , Dioxigenasas/metabolismo , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Proteínas Asociadas a Microtúbulos , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato
16.
Mol Cell ; 83(23): 4334-4351.e7, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37979586

RESUMEN

Growth factor receptors rank among the most important oncogenic pathways, but pharmacologic inhibitors often demonstrate limited benefit as monotherapy. Here, we show that epidermal growth factor receptor (EGFR) signaling repressed N6-methyladenosine (m6A) levels in glioblastoma stem cells (GSCs), whereas genetic or pharmacologic EGFR targeting elevated m6A levels. Activated EGFR induced non-receptor tyrosine kinase SRC to phosphorylate the m6A demethylase, AlkB homolog 5 (ALKBH5), thereby inhibiting chromosomal maintenance 1 (CRM1)-mediated nuclear export of ALKBH5 to permit sustained mRNA m6A demethylation in the nucleus. ALKBH5 critically regulated ferroptosis through m6A modulation and YTH N6-methyladenosine RNA binding protein (YTHDF2)-mediated decay of the glutamate-cysteine ligase modifier subunit (GCLM). Pharmacologic targeting of ALKBH5 augmented the anti-tumor efficacy of EGFR and GCLM inhibitors, supporting an EGFR-ALKBH5-GCLM oncogenic axis. Collectively, EGFR reprograms the epitranscriptomic landscape through nuclear retention of the ALKBH5 demethylase to protect against ferroptosis, offering therapeutic paradigms for the treatment of lethal cancers.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Receptores ErbB , Ferroptosis , Glioblastoma , Humanos , Adenosina/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Receptores ErbB/genética , Ferroptosis/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , ARN Mensajero/genética
17.
Physiol Res ; 72(4): 425-444, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37795886

RESUMEN

FTO and ALKBH5 proteins are essential erasers of N6-adenosine methylation in RNA. We studied how levels of FTO and ALKBH5 proteins changed during mouse embryonic development, aging, cardiomyogenesis, and neuroectodermal differentiation. We observed that aging in male and female mice was associated with FTO up-regulation in mouse hearts, brains, lungs, and kidneys, while the ALKBH5 level remained stable. FTO and ALKBH5 proteins were up-regulated during experimentally induced cardiomyogenesis, but the level of ALKBH5 protein was not changed when neuroectodermal differentiation was induced. HDAC1 depletion in mouse ES cells caused FTO down-regulation. In these cells, mRNA, carrying information from genes that regulate histone signature, RNA processing, and cell differentiation, was characterized by a reduced level of N6-adenosine methylation in specific gene loci, primarily regulating cell differentiation into neuroectoderm. Together, when we compared both RNA demethylating proteins, the FTO protein level undergoes the most significant changes during cell differentiation and aging. Thus, we conclude that during aging and neuronal differentiation, m6A RNA demethylation is likely regulated by the FTO protein but not via the function of ALKBH5.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Masculino , Ratones , Animales , Femenino , Regulación hacia Arriba , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Desarrollo Embrionario , ARN/metabolismo , Diferenciación Celular , Adenosina/metabolismo , Envejecimiento/genética
18.
Cell Rep ; 42(10): 113163, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37742191

RESUMEN

N6-methyladenosine (m6A) RNA modification controls numerous cellular processes. To what extent these post-transcriptional regulatory mechanisms play a role in hematopoiesis has not been fully elucidated. We here show that the m6A demethylase alkB homolog 5 (ALKBH5) controls mitochondrial ATP production and modulates hematopoietic stem and progenitor cell (HSPC) fitness in an m6A-dependent manner. Loss of ALKBH5 results in increased RNA methylation and instability of oxoglutarate-dehydrogenase (Ogdh) messenger RNA and reduction of OGDH protein levels. Limited OGDH availability slows the tricarboxylic acid (TCA) cycle with accumulation of α-ketoglutarate (α-KG) and conversion of α-KG into L-2-hydroxyglutarate (L-2-HG). L-2-HG inhibits energy production in both murine and human hematopoietic cells in vitro. Impaired mitochondrial energy production confers competitive disadvantage to HSPCs and limits clonogenicity of Mll-AF9-induced leukemia. Our study uncovers a mechanism whereby the RNA m6A demethylase ALKBH5 regulates the stability of metabolic enzyme transcripts, thereby controlling energy metabolism in hematopoiesis and leukemia.


Asunto(s)
Leucemia , ARN , Animales , Humanos , Ratones , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Metabolismo Energético , Células Madre Hematopoyéticas/metabolismo , ARN/metabolismo , Estabilidad del ARN/genética
19.
J Cancer Res Clin Oncol ; 149(17): 15499-15510, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37646828

RESUMEN

Hepatocellular carcinoma (HCC), featured with high prevalence and poor prognosis, is the major cause of cancer-related deaths worldwide. As a subgroup of liver cancer cells capable of differentiation, tumorigenesis and self-renewal, liver cancer stem cells (LCSCs) serve as one of the reasons leading to HCC progression and therapeutic resistance. Therefore, in-depth exploration of novel molecular biomarkers related to LSCSs is of great necessity. In our study, we found that human AlkB homolog H5 (ALKBH5) expression was enriched in LCSCs, which could foster proliferation, invasion and migration of the HCC cells. Mechanically, ALKBH5 positively mediated the expression of SOX4 via demethylation, and SOX4 promoted SHH expression at the transcriptional level to activate sonic hedgehog (SHH) signaling pathway. Furthermore, exosomes derived from CD133+ HCC cells could transmit ALKBH5 into THP-1 cells, which might be associated with M2 polarization of macrophages. In summary, the ALKBH5/SOX4 axis plays a significant role in exacerbating LCSC properties via activating SHH signaling pathway, and ALKBH5 could be a critical effector related to macrophage M2 polarization. These findings might provide a promising new biomarker for HCC diagnosis and treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Transducción de Señal , Células Madre Neoplásicas/metabolismo , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo
20.
J Biol Chem ; 299(8): 105071, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37474102

RESUMEN

Paraspeckles (PS) are nuclear structures scaffolded by the long noncoding RNA NEAT1 and protein components such as NONO and SFPQ. We previously found that the upregulation of RNA N6-methyl-adenosine (m6A) demethylase ALKBH5 facilitates hypoxia-induced paraspeckle assembly through erasing m6A marks on NEAT1, thus stabilizing it. However, it remains unclear how these processes are spatiotemporally coordinated. Here we discover that ALKBH5 specifically binds to proteins in PS and forms phase-separated droplets that are incorporated into PS through its C-terminal intrinsically disordered region (cIDR). Upon exposure to hypoxia, rapid ALKBH5 condensation in PS induces m6A demethylation of NEAT1, which further facilitates PS formation before the upregulation of ALKBH5 expression. In cells expressing ALKBH5 lacking cIDR, PS fail to be formed in response to hypoxia, accompanied with insufficient m6A demethylation of NEAT1 and its destabilization. We also demonstrate that ALKBH5-cIDR is indispensable for hypoxia-induced effects such as cancer cell invasion. Therefore, our study has identified the role of ALKBH5 in phase separation as the molecular basis of the positive feedback loop for PS formation between ALKBH5 incorporation into PS and NEAT1 stabilization.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Paraspeckles , ARN Largo no Codificante , Humanos , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Hipoxia , Paraspeckles/metabolismo , ARN Largo no Codificante/genética , Activación Transcripcional , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA